The Eigenvalues of the Sample Covariance Matrix of a Multivariate Heavy-tailed Stochastic Volatility Model
نویسندگان
چکیده
We consider a multivariate heavy-tailed stochastic volatility model and analyze the large-sample behavior of its sample covariance matrix. We study the limiting behavior of its entries in the infinite-variance case and derive results for the ordered eigenvalues and corresponding eigenvectors. Essentially, we consider two different cases where the tail behavior either stems from the iid innovations of the process or from its volatility sequence. In both cases, we make use of a large deviations technique for regularly varying time series to derive multivariate α-stable limit distributions of the sample covariance matrix. For the case of heavy-tailed innovations, we show that the limiting behavior resembles that of completely independent observations. In contrast to this, for a heavy-tailed volatility sequence the possible limiting behavior is more diverse and allows for dependencies in the limiting distributions which are determined by the structure of the underlying volatility sequence.
منابع مشابه
New HEAVY Models for Fat-Tailed Returns and Realized Covariance Kernels
We develop a new model for the multivariate covariance matrix dynamics based on daily return observations and daily realized covariance matrix kernels based on intraday data. Both types of data may be fat-tailed. We account for this by assuming a matrix-F distribution for the realized kernels, and a multivariate Student’s t distribution for the returns. Using generalized autoregressive score dy...
متن کاملMatrix Box-Cox Models for Multivariate Realized Volatility
We propose flexible models for multivariate realized volatility dynamics which involve generalizations of the Box-Cox transform to the matrix case. The matrix Box-Cox model of realized covariances (MBC-RCov) is based on transformations of the covariance matrix eigenvalues, while for the Box-Cox dynamic correlation (BC-DC) specification the variances are transformed individually and modeled join...
متن کاملAutoregressive Stochastic Volatility Models with Heavy-tailed Distributions: A Comparison with Multifactor Volatility Models
This paper examines two asymmetric stochastic volatility models used to describe the heavy tails and volatility dependencies found in most financial returns. The first is the autoregressive stochastic volatility model with Student’s t-distribution (ARSV-t), and the second is the multifactor stochastic volatility (MFSV) model. In order to estimate these models, the analysis employs the Monte Car...
متن کاملAnna Pajor
Multivariate models of asset returns are very important in financial applications. Asset allocation, risk assessment and construction of an optimal portfolio require estimates of the covariance matrix between the returns of assets (see e.g. Aguilar and West (2000), Pajor (2005a, 2005b)). Similarly, hedges require a covariance matrix of all the assets in the hedge. There are two main types of vo...
متن کاملEfficient Bayesian estimation of a multivariate stochastic volatility model with cross leverage and heavy-tailed errors
An efficient Bayesian estimation using a Markov chain Monte Carlo method is proposed in the case of a multivariate stochastic volatility model as a natural extension of the univariate stochastic volatility model with leverage and heavy-tailed errors. Note that we further incorporate cross-leverage effects among stock returns. Our method is based on a multi-move sampler that samples a block of l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016